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ABSTRACT: Here we report a single-step direct writing technology for making
three-dimensional (3D) macroporous photonic crystal patterns on a new type of
pressure-responsive shape memory polymer (SMP). This approach integrates
two disparate fields that do not typically intersect: the well-established
templating nanofabrication and shape memory materials. Periodic arrays of
polymer macropores templated from self-assembled colloidal crystals are
squeezed into disordered arrays in an unusual shape memory “cold”
programming process. The recovery of the original macroporous photonic
crystal lattices can be triggered by direct writing at ambient conditions using both
macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly,
this shape memory disorder−order transition is reversible and the photonic crystal patterns can be erased and regenerated
hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape
memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental
investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering
the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes.
Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various
mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to
rewritable high-density optical data storage media.
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1. INTRODUCTION

Three-dimensional printing (or additive manufacturing) has
attracted great recent interest, as it enables rapid manufacturing
and prototyping of 3D objects with arbitrary shapes and/or
geometries.1−4 In 3D printing, successive layers of materials (e.g.,
polymers, ceramics, and metal alloys) are laid down under
computer control through processes like inkjet printing,
extrusion, and sintering. Beyond conventional manufacture of
macroscopic objects (e.g., customized shoes, automobile parts,
and even guns), 3D printing has also been extensively exploited
for fabricating microscopic devices with unique optical, electrical,
magnetic, and biological properties.5−7 One preeminent example
is the direct writing of 3D ordered photonic crystals with desired
crystal structures and pre-engineered defects.8−14 Photonic
crystals are periodic dielectric structures with a forbidden
photonic band gap (PBG) for electromagnetic waves.15 As 3D
photonic crystals with full PBGs can manipulate photons in a
similar fashion as semiconductors do electrons, they provide
enormous opportunities in controlling the flow of light in
microscopic volumes for a plethora of applications ranging from
all-optical integrated circuits and quantum information process-
ing to low-threshold lasers and lossless waveguides.15,16 To

fabricate photonic crystals possessing optical and near-infrared
(NIR) PBGs, the lattice constant of the artificial crystal must
have dimensions on the submicrometer scale.15,17 Unfortunately,
this length scale is formidably challenging for direct-writing-
based 3D printing technologies, especially considering the
overflow of the ink materials (e.g., photopolymers) in the
layer-by-layer deposition process.4

Here we report a single-step direct writing technology for
reversibly printing 3D macroporous photonic crystal patterns
(both macroscopic and nanoscopic) with submicrometer-scale
lattice spacing on a new type of pressure-responsive shape
memory polymer. This technology integrates scientific principles
drawn from two disparate fields: the well-established templating
nanofabrication18−20 and shape memory materials.21−23 Com-
pared with conventional 3D printing, which needs to address the
resolution issue in generating the intrinsic 3D submicrometer-
scale microstructures, the current approach utilizes colloidal
crystal-based templating nanofabrication in defining the final
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photonic crystal lattice parameters.24,25 Self-assembled colloidal
crystals have been widely used as structural templates in
fabricating macroporous photonic crystals with periodic arrays
of air cavities embedded in the matrix material (e.g., polymer,
metal, and semiconductor).19,25−29 The stringent submicrom-
eter-scale lattice spacing requirement for making visible- and
NIR-active 3D photonic crystals can be easily satisfied by
controlling the size of the templating colloidal particles.28

Another major merit of the current technology is the
employment of new pressure-sensitive SMPs that enable the
direct writing of arbitrary 3D macroporous photonic crystal
patterns on the polymer surface in a single step.30,31 Shape
memory polymers are a class of smart materials that can recover
their “memorized” permanent shapes triggered by various
external stimuli, such as heat, light, solvent, and electromagnetic
field.22,23,32−41 Shape memory (SM) effects in traditional SMPs
are usually achieved in three steps: programming, storage, and
recovery.33 In programming, a SMP sample is mechanically
deformed from its permanent shape to a temporary configuration
by heating the sample above a specific transition temperature
(Ttrans), such as the polymer glass transition temperature (Tg).
The temporary shape is then “frozen” in the polymer by cooling
the deformed sample below Ttrans. Recovery to the permanent
shape, which is caused by entropy elasticity,33 can finally be
triggered by applying different stimuli, such as reheating the
sample above Ttrans or exposing it to ultraviolet radiation.
Although thermoresponsive SMPs have been utilized in making
tunable 3D colloidal photonic crystals and 2D diffractive
gratings,42−49 the heat-demanding SM programming and
recovery steps impede the ultimate performance and applications
of the SMP-enabled microoptical devices.

2. EXPERIMENTAL SECTION
2.1. Templating Nanofabrication of Macroporous SMP

Photonic Crystal Membranes. Monodispersed silica microspheres
with diameter ranging from 200 to 400 nm were synthesized using the
standard Stöber method.50 The as-synthesized silica microspheres were
purified in 200-proof ethanol by using multiple centrifugation and
redispersion cycles (at least 5 times). The purified silica particles were
then self-assembled on glass microslides to form hexagonally close-
packed colloidal single crystals using the well-established convective self-
assembly technology.51 The thickness of the resulting colloidal crystal
was controlled to∼5 μm by adjusting the particle volume fraction of the
silica microsphere−ethanol suspension to ∼1.0%. A double-sided
adhesive tape (∼1 mm thick) was used as a spacer to separate the
glass microslide with the self-assembled silica colloidal crystal on its
surface from another bare glass microslide. A viscous oligomer mixture
containing 1.5 g of polyethylene glycol (600) diacrylate (SR610,
Sartomer, Tg ≈ −42 °C, MW 742, refractive index 1.468), 0.5 g of
ethoxylated (20) trimethylolpropane triacrylate (SR415, Sartomer, Tg≈
−40 °C, MW 1176, refractive index 1.470), and 0.016 g Darocur 1173
photoinitiator (2-hydroxy-2-methyl-1-phenyl-1-propanone, BASF) was
injected between the two glass microslides to fill up the gap. The sample
became nearly transparent due to the refractive index matching between
the oligomer mixture and the silica microspheres. The oligomers were
then photopolymerized by exposing the sample to ultraviolet radiation
for 4 s using a pulsed UV curing system (RC 742, xenon). The solidified
sample was finally soaked in a 1 vol % hydrofluoric acid aqueous solution
for 4 h and then rinsed with deionized water. After blow-drying with
compressed air, free-standing macroporous SMP membranes resulted.
2.2. Directly Printing and Hand-Writing 3D Macroscopic

Photonic Crystal Patterns on Templated Macroporous SMP
Membranes.We prepared 2× 2 cm2macroporous SMPmembranes as
“writing pads” for directly printing and hand-writing 3D photonic crystal
patterns on them. Commercial rubber stamps with relief patterns
purchased from Office Depot were pressed gently for 2 s on the SMP

“writing pads” to print colorful inverted patterns on the macroporous
membranes. To directly write 3D photonic crystal features, a homemade
writing tool wasmade by wrapping a pencil with Handi-wrap plastic film.
An iridescent “UF” pattern with vivid colors was then directly written on
the SMP “writing pad”. The colorful patterns can be erased by
immersing the SMP membranes in deionized water and then drying out
of water. Through thorough investigation, our results showed that the
SMP “writing pads” can be reused hundreds of times without apparent
degradation in rewritability.

2.3. Directly Writing 3D Photonic Crystal Micropatterns by
Atomic Force Microscope (AFM). A MFP-3D atomic force
microscope (Asylum Research, CA) was used for writing microscopic
patterns on SMP membranes. Both the dedicated MFP-3D Nano-
Indenter module (flexure, k = 3814N/m) and the AFM cantilever-based
configuration were used with a 1 mm (sapphire, E = 350 GPa) and a 20
μm (borosilicate, E = 62.8 GPa, nominal k ≈ 42 N/m, length = 125 μm,
CP-NCH-BSG cantilever from sQUBE Inc., Bickenbach, Germany)
diameter spherical tip, respectively. The minimum force and the
displacement resolution of the NanoIndenter module are less than 3 μN
and 1 nm, respectively. The resolutions of the cantilever-based
configuration are less than 6 nN and 0.1 nm. The writing forces for
both configurations were controlled by closed-loop control of the set-
point voltage, which defines the amount of the contact force maintained
during writing. The MicroAngelo software routine (Asylum Research)
was used to program writing parameters including set point voltage,
speed, feature geometry, etc.

2.4. Sample Characterization. SEM imaging was carried out on a
FEI Nova NanoSEM 430. A thin layer of gold was sputtered onto the
samples prior to imaging. Amplitude-modulation atomic force
microscopy (AM-AFM) was performed uing the MFP-3D AFM with
a Nanosensor PPP-NCHR probe (tip radius of <10 nm). All AFM
images were processed using the Scanning Probe Imaging Processor
(SPIP, Image Metrology Inc., Horsholm, Denmark) software. Normal-
incidence optical reflection spectra were obtained using an Ocean
Optics HR4000 high-resolution fiber optic vis−NIR spectrometer with a
reflection probe (R600-7) and a tungsten halogen light source (LS-1).
Absolute reflectivity was obtained as the ratio of the sample spectrum
and a reference spectrum, which was the optical density obtained from
an aluminum-sputtered (1000 nm thickness) silicon wafer.

2.5. Scalar Wave Approximation (SWA) Optical Modeling.
The scalar wave theory developed for periodic dielectric structures was
implemented to model the normal-incidence optical reflection spectra
from macroporous SMP photonic crystal membranes.52 In the SWA
theory, Maxwell’s equations are solved for a periodic dielectric medium
assuming that one may neglect diffraction from all but one set of
crystalline planes. In the current work, only the (111) crystalline planes
of a face-centered cubic crystal were considered in the modeling. The
SWA simulation contained no adjustable parameters, as the size of the
macropores and the crystal thickness were experimentally determined
from SEM images, and the refractive indices of the SMP copolymers
were known.

3. RESULTS AND DISCUSSION
3.1. Concept of Direct Writing of 3D Photonic Crystals

on Macroporous SMP Membranes. We have recently
discovered a new type of stimuli-responsive shape memory
polymer that enables unusual “cold” programming (i.e., the
deformation from the permanent shape to the temporary
configuration occurs at room temperature) and instantaneous
shape recovery at ambient conditions triggered by applying a
static contact pressure or exposing the polymer to various
organic vapors (e.g., acetone and toluene).30,31 These new SMPs
are composed of photocured copolymers of ethoxylated (20)
trimethylolpropane triacrylate (ETPTA 20) and polyethylene
glycol (600) diacrylate (PEGDA 600) oligomers with varying
volumetric ratios from 1:1 to 1:6. Figure 1 shows an exemplary
pressure-induced SM recovery process using an ETPTA 20-co-
PEGDA 600 copolymer with a 1:3 volumetric ratio. The relief
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“+A” pattern on the surface of a commercial rubber stamp (Figure
1a) was inversely printed on a translucent SMP membrane with
collapsed macropores (temporary configuration, Figure 1c). The
SM recovery of the permanent, 3D ordered macroporous arrays
(Figure 1d), which were templated from self-assembled colloidal
crystals consisting of 280 nm silica microspheres, led to the
iridescent structural colors of the printed “A+” pattern in Figure
1b. To explain this counterintuitive pressure-induced recovery of
collapsed macropores, we proposed a SM recovery mechanism
triggered by an adhesive pull-off force caused by the attractive van
der Waals interactions between the rubber stamp and the
pressure-responsive SMP membrane.30 However, this new
recovery mechanism is far from being thoroughly investigated
and verified. Here we explore a new direct writing technology for
inscribing arbitrary 3D photonic crystal patterns on the above
pressure-responsive SMP membranes. In sharp contrast to the
vertical pull-off force in our previous static printing process
(Figure 1), the lateral shear stress plays a critical role in this
dynamic approach.
The scheme in Figure 2 illustrates the basic concept of the new

direct writing technology for making 3D ordered photonic
crystal patterns on a macroporous SMP membrane with
collapsed macropores. The self-standing SMP membranes were
produced by templating nanofabrication using convectively self-
assembled silica colloidal crystals as structural template.53 In this
process, ETPTA 20 and PEGDA 600 oligomer mixtures were
first photopolymerized in the interstitials of 3D ordered silica
particle arrays. The cross-linked polymer chains in the 3D
inversely ordered polymer matrix were primarily in an energeti-
cally favorable, stress-free configuration, denoting the permanent
state of the SMPs. After removal of the templating silica
microspheres in a hydrofluoric acid aqueous solution and drying
the SMP membrane out of water, the originally ordered
macropores were surprisingly collapsed, resulting in the
translucent appearance of the film (see Figure 1b). Our previous
studies showed that strong capillary pressure induced by water
evaporation deformed the elastic macropores (Tg of the
copolymers ≪ room temperature) into disordered arrays in

this “cold” programming process (i.e., the deformation of
ordered macropores occurred at ambient conditions as
compared to traditional “hot” programming steps),30 storing
excess stresses in the squeezed, temporarily configured polymer
chains. The recovery of the permanent, stress-free state (i.e., 3D
ordered macroporous arrays) can be triggered by direct writing
using either macroscopic or microscopic writing tools like a
conventional pen or an atomic force microscope tip. As the SM
recovery is confined only to the regions underneath the writing
tool and the recovered feature size is mainly determined by the
sharpness of the writing tip, we can generate nanoscopic
photonic crystal patterns, like the letters “U” and “F” in Figure 2
(representing the abbreviations for University of Florida), using a
sharp AFM tip. In addition to inducing the above disorder-to-
order transition, the direct writing process can also pop up the
deformed macropores underneath the tip, making the recovered
photonic crystal patterns protrude out of an otherwise
disordered background.

3.2. Direct Writing of Macroscopic Photonic Crystal
Patterns. We started to demonstrate the direct writing of 3D
photonic crystal patterns on pressure-responsive SMP mem-
branes using macroscopic writing tools like a conventional
fountain pen (without ink). However, the direct writing-induced
SM recovery of collapsed macropores was not as straightforward
as that exhibited by static printing.30 Although well-defined
writing marks were left underneath the stainless steel tip of the
fountain pen, these marks were pale-colored, indicating an
incomplete macropore recovery process. Our extensive experi-
ments revealed that the tip material plays a determining role in
triggering SM macropore recovery. Hard materials, like metals,
graphite (pencil cores), and hard plastics (e.g., polystyrene),
were found inefficient in generating colorful patterns; while soft
materials, such as low density polyethylene (LDPE) and
polydimethylsiloxane (PDMS) with different elastic moduli
(synthesized by controlling the mixing ratio of the two
precursors of Sylgard 184 PDMS), were much easier in inducing
a complete macropore recovery. We speculate that soft materials
could induce stronger van der Waals interactions between the
writing tip and the SMPmembrane than harder tips and thus lead
to larger pull-off force for popping up the deformed macropores.
Video S1 in the Supporting Information (am5b07220_si_002.a-
vi) shows a direct writing process using a LDPE-wrapped pencil
as the writing tool. Iridescent features with the same dimension

Figure 1. (a) Photograph of a rubber stamp with a “+A” relief pattern on
its surface. (b) Photograph of an iridescent “A+” pattern printed on a
translucent macroporous SMPmembrane with 280 nmmacropores. (c)
Cross-sectional SEM image showing the translucent region in (b). (d)
Cross-sectional SEM image showing the iridescent region in (b).

Figure 2. Schematic illustration showing the direct writing of
microscopic 3D photonic crystal patterns (letters “U” and “F”) on a
macroporous SMPmembrane with collapsed macropores using an AFM
tip.
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as the writing tip immediately showed up following the
movement of the tip. Figure 3a displays a greenish “UF” pattern

written on a translucent macroporous SMP copolymer
membrane templated from 300 nm silica microspheres. The
typical cross-sectional scanning electron microscope (SEM)
image in Figure 3b reveals that the macropores in the
noniridescent regions in Figure 3a are disordered and the surface
of the deformed membrane is quite rough. By contrast, the
macropores in the recovered iridescent regions are 3D highly
ordered and the film surface is much smoother (Figure 3c). The
average thickness of the macroporous layer changes from 2.77 ±
0.26 μm for the disordered array to 4.56 ± 0.04 μm for the
recovered photonic crystal, indicating a 65% expansion of the
deformed macropores. Importantly, the directly written
photonic crystal patterns stored at ambient conditions are stable
for a long period of time. The batches of samples prepared 8
months ago still maintain their vivid iridescent colors and well-
defined patterns. No spontaneous recovery of the deformed
macropores was observed at ambient conditions.
The different optical appearances of the translucent and the

iridescent regions in Figure 3a can be quantitatively characterized
by comparing their normal-incidence optical reflection spectra
(Figure 3d). No apparent Bragg diffraction peaks are shown in
the spectrum corresponding to the translucent region, while a
distinct optical stop band located at ∼543 nm with well-defined
Fabry−Perot fringes is present in the spectrum obtained from the
iridescent region. Importantly, the experimental spectrum
matches well with the simulated spectrum using a scalar-wave
approximation model which assumes a perfect face-centered
cubic (fcc) crystalline lattice with its (111) planes normal to the
incident light.52 This good match demonstrates the high
crystalline quality of the writing-recovered photonic crystals.

Figure 3. (a) Photograph of a green-colored, handwritten “UF” pattern
on a translucent macroporous SMP membrane with collapsed 300 nm
macropores. (b) Typical cross-sectional SEM image of the translucent
region in (a). (c) Typical cross-sectional SEM image of the iridescent
region in (a). (d) Normal-incidence optical reflection spectra obtained
from the iridescent and the translucent regions of the sample in (a). The
simulated spectrum using a SWA model is also shown to compare with
the experimental results.

Figure 4. (a) AFM image of a micropattern “U” directly written on a macroporous SMP membrane using a 1 mm diameter sapphire spherical tip. (b)
AFM image of a micropattern “F”. (c) Height profile scanned across the dashed line in (a). (d) Height profile scanned across the dashed line in (b).
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Moreover, the direct writing process is reversible. As shown by
video S2 in the Supporting Information (am5b07220_si_003.a-
vi), the prewritten photonic crystal patterns can be entirely
erased by drying the SMPmembrane out of water. New photonic
crystal features can then be written on the regenerated
translucent film. This rewriting process can be repeatedly done
without apparent degradation in the chromogenic response of
the SMP membranes. Figure S1a and Figure S1b show the
normal-incidence optical reflection spectra obtained from a
macroporous SMP membrane under nine cycles of writing and
erasing processes. A comparison of the absolute reflection
amplitudes of the diffraction peaks in Figure S1a and the
amplitudes taken at 550 nm wavelength in Figure S1b confirms
the good reversibility of the reconfiguration processes.
3.3. Direct Writing of Nanoscopic Photonic Crystal

Patterns. In addition to macroscopic writing tools, atomic force
microscopy was used to explore the capability in directly writing
micro/nano-scale photonic crystal features under well-controlled
conditions. Figure 4a and Figure 4b shows AFM images of the
designed “U” and “F” micropatterns written on a SMP
copolymer membrane with 300 nm macropores using a 1 mm
diameter sapphire spherical tip. Both letters were written with
140 μN contact force at a lateral writing speed of 5 μm/s. Each
letter was written within a 100× 100 μm2 region. As illustrated by
the corresponding depth profiles in Figure 4c and Figure 4d, the
letters protrude out from the roughmembrane surface to a height
of ∼2 μm, and the minimum line width achieved by using the
blunt tip is approximately 30 μm. The raised letters indicate that
the SMP surface underwent a vertical transformation during the
direct writing process, agreeing with the apparent thickness
increase of the macroporous layer (∼1.8 μm) revealed by SEM

(see Figure 3b and Figure 3c). Optical microscopy images (not
shown here) illustrate that only the micropatterned areas reflect
brilliant green light. A further observation of the SMP surface
topography by higher resolution AFM imaging (Figure 5) shows
not only that the patterned areas are much smoother than the
unpatterned areas (Figure 5c and Figure 5cd) but also that the
ordered arrangement of the macropores only appears on the
patterned areas (Figure 5a and Figure 5b). The root-mean-
square (rms) linear profile roughness (Rq) of the patterned and
unpatterned regions is 5.53 ± 0.75 μm and 50.51 ± 8.93 μm,
respectively. The combination of the above observations
including the ordered surface macropore structure supports
that the reflective “UF” micropatterns are periodic arrays of
recovered macropores.

3.4. Critical Contact Pressure Inducing SM Recovery.
To determine the critical contact pressure that can trigger the
recovery of the deformed macropores during direct writing, a
series of microscopic lines were written with decreasing force by
controlling the set-point voltage applied to the AFM flexure.
Figure 6a shows an optical microscope image (in transmission
mode) of six lines written with 13.8, 27.7, 138, 277, 830, and 1380
μN force (from left to right, corresponding to 0.005, 0.01, 0.05,
0.1, 0.3, and 0.5 V set-point voltage). The tip writing speed was
held constant at 1 μm/s. In addition to the apparent difference in
line width as revealed by the optical microscope image, other
characteristics of the written lines were identified by AFM images
(Figure 6b−g) and the corresponding depth profiles (Figure
6h−m). The line widths determined by both AFM and optical
microscope images decrease from ∼60 μm for the maximum
force (1380 μN) to ∼25 μm for the minimal force (13.8 μN),
while the heights of the protruding lines are nearly constant at

Figure 5. (a) Higher resolution AFM image of a recovered area on the micropatterned letter “U” in Figure 4a. (b) Higher resolution AFM image of an
unpatterned area. (c) Height profile scanned across the dashed line in (a). (d) Height profile scanned across the dashed line in (b).
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∼1.2 μm. This means the SMP can recover to its permanent
shape due to the tip−sample interaction, which is in part caused
by the attractive force (adhesion) between the tip and the

copolymer membrane.30 This attractive force is contributed by
both the van der Waals interactions and the capillary force
generated by the water meniscus bridging between the tip and

Figure 6. (a) Optical microscope image of microscopic lines written with increasing forces from left to right. (b−g) AFM images of the lines (from left to
right) in (a). (h−m) Height profiles scanned across the dashed lines in (b)−(g).

Table 1. Dependence of the Recovered Line Widths on the Parameters of the AFM-Based Direct Writing Process

set-point voltage (V)

0.005 0.01 0.05 0.1 0.3 0.5

writing force (μN) 13.8 27.7 138 277 830 1380
line width (μm) 25.8 ± 1.9 33.0 ± 2.7 40.4 ± 1.1 44.3 ± 1.6 53.8 ± 2.2 60.4 ± 1.1
contact pressure (kPa) 26.2 32.0 106.7 177.4 361.1 477.4
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sample.54 The average maximum attractive force (Fattr
ave) can be

determined from the measurement of the pull-off force required
to disengage the contact of the AFM tip with the sample. The
contact force was calculated as the difference between the Fattr

ave

and the pulling force applied by the tip. The minimum pressure
that can induce the SM recovery was determined by Pm = Fm/A,
where Pm is the minimum pressure, Fm is the minimum contact
force, and A = πr2 is the contact area. The minimum contact
radius r is calculated as half of the line width. Table 1 summarizes
the writing forces, the resulting line widths, and the calculated
contact pressures. The minimum contact pressure that can cause
the macropore recovery was determined to be ∼26 kPa. Quasi-
static indentation was also explored to compare with the dynamic
direct writing process. However, even with an applied force 1000
times larger than the writing one, the SMP surface was barely
recovered by quasi-static indentation, as there was no
distinguishable diffractive photonic crystal pattern generated.
The SM recovery mechanisms and the difference between these
two processes will be discussed in section 3.6.
3.5. Writing Speed Effects on SM Recovery. To further

investigate the writing speed effects on the SMP surface recovery,
as well as the minimal line width enabled by AFM directly
writing, a 20 μm diameter borosilicate spherical tip was used to
perform a series of writing experiments. By use of a smaller tip
radius, the resolution is significantly increased along with the
sensitivity in writing speed. The AFM images in Figure 7 show
nanoscopic lines written with the same force (6 μN), but the
writing speed was increased from 0.2 μm/s (Figure 7a) to 20
μm/s (Figure 7d). The characteristics of the resulting nano-
patterns including line widths and protruding heights are
summarized in Table 2. It is apparent that both the line widths
and heights of the recovered nanopatterns increased with higher
writing speed. This set of experiments confirms that the SM

recovery of the deformed macropores is dependent on the lateral
motion and perturbation between the AFM tip and the SMP
membrane.

3.6. SM Recovery Mechanisms. All above experimental
results have indicated that the direct writing approach is not a
simple and straightforward extension of the static printing
technology as reported in our previous work.30 From an energy
perspective, the SM deformation and recovery processes are due
to the energy transformation between the external (i.e., capillary
pressure induced by water evaporation, applied contact force,
and shear stress caused by tip lateral motion) and the internal
(e.g., polymer chain movement, internal energy change, and
stored elastic energy) of the SMP system. At room temperature,
the ETPTA 20-co-PEGDA 600 copolymer is in its rubbery state,
above the glass transition temperature (Tg ≈ −42 °C).30 The
polymer chains are highly compliant at room temperature, and
the polymer behaves like a soft (viscous) elastic material.55 The
large capillary pressure induced by the high surface tension of
water collapses the originally ordered macropores during the
water evaporation process.30 To reactivate the squeezed polymer
chains and trigger the collapsed macropore recovery to its
original configuration, external input energy is needed or,
equivalently, a reverse process to water evaporation is needed.
Mechanical stress, in the form of either statically or dynamically
applied force by a rubber stamp or a writing tip, can input energy

Figure 7. AFM images of nanoscopic lines written with different AFM tip speeds: (a) 0.2 μm/s; (b) 1 μm/s; (c) 5 μm/s; (d) 20 μm/s.

Table 2. Dependence of the Recovered Line Width and
Height on the Writing Speed of the AFM Tip

writing speed (μm/s)

0.2 1 5 20

line width (μm) 4.1 ± 0.4 5.6 ± 0.9 6.0 ± 0.9 6.4 ± 0.4
line height (nm) 301 ± 12 407 ± 17 477 ± 20 526 ± 29
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into the SMP system.56 In the case of direct writing, the energy
required to overcome the SM activation barrier is provided by
sliding the tip across the SMP surface with a compressive force.
The kinetic energy of the tip is transferred to the polymer matrix
in the form of shear deformation and vibration.56−58 The
combination of shear and vibration, which increases the internal
energy of the SMP system, provides the energy to activate
polymer chain mobility and trigger the macropore recovery. Our
experimental results show that with higher tip sliding speed, a
more complete recovery of SMP was achieved, which was
presented as a higher recovered line width and height (see Figure
7). This is in accordance with intuition that the more input
energy, the higher is the density of activated polymer chains.
It has been argued that the shear stress field can induce

changes in the conformation of intermolecular bonds and
polymer chain flow in glassy polymers at temperatures above
Tg.

59 In addition, a recent study was able to directly measure
stress-induced molecular mobility in glassy polymers.60 Mobility
was shown to increase by 10- to 1000-fold after stress was
applied. Furthermore, nanoscopically raised patterns were
observed when a polyethylene oxide (PEO) film was raster-
scanned by an AFM tip at ambient conditions.58 Viscoelastic
effects and localized heating caused by rupture of the adhesive
bonds between the tip and the polymer, which could raise the
local surface temperature by up to several hundred kelvin, were
attributed to the unexpected formation of the raised areas during
scanning. These studies support what we observed with the
effects of the tip materials (e.g., LDPE vs stainless stain tip) and
the varying writing speed (i.e., strain rate) on the SM macropore
recovery. LDPE-wrapped tips, which could induce stronger van
der Waals interactions with the ETPTA 20-co-PEGDA 600
copolymers than stainless steel tips, are thus more efficient in
inducing a more complete SM recovery during direct writing. In
the case of quasi-static indentation, only vertical contact between
the tip and the SMP membrane was involved. During
indentation, the AFM tip compressed the macroporous structure
to a more squeezed configuration. The majority of the external
energy was stored in the elastic deformation of the polymer
matrix. Only very limited kinetic energy was transferred as
internal energy to activate the polymer chains. As a result, a
comparatively larger force is expected to reactivate the polymer
chain mobility than in the dynamic writing case. In retraction, the
stored elastic potential energy was gradually released as the SMP
surface returned to its initial contact height. Then the attractive
adhesion force between the tip and the sample acted as the
subsequent recovery force.30 Our experimental results support
this conjecture. It is worthy to point out that the minimum force
that can cause macropore recovery in quasi-static indentation is
2−3 orders magnitude higher than that in dynamic writing.
Assuming the indention process is one extreme case in writing for
which the lateral speed is zero, then it is clear that the dominant
energy to induce SM recovery comes from the lateral movement
of the writing tip.

4. CONCLUSIONS
By integrating the well-established templating nanofabrication
with a new type of pressure-responsive SMP, we have developed
a dynamic direct writing technology for fabricating 3D ordered
macroporous photonic crystal patterns in a single step. We have
demonstrated that both macroscopic and nanoscopic photonic
crystal features can be reversibly patterned and erased, highly
desirable for developing reconfigurable nanooptical devices.
Systematic experiments have revealed the importance of the

material selection, dimension, applied force, and writing speed of
the tips in affecting the SM recovery of 3D ordered macropores.
Importantly, the dynamic writing approach exhibits significant
differences in SM recovery mechanisms and critical recovery
force than quasi-static indentation. Besides straightforward
applications in photonic crystal devices and nanooptics, the
striking chromogenic effects induced by the disorder-to-order
transition during SM recovery of ordered macropores, the
manifest protrusion of the recovered regions, the sensitivity of
the SMP membranes to various mechanical stresses, the unusual
room-temperature operation for the entire shape-memory cycle
(from programming to recovery), and themicroscopic resolution
of the directly written features could add new dimensions to
many existing and future applications, such as in mechanochro-
mic stress and impact sensors,61−65 rewritable high-density
optical data storage media,66,67 chromogenic chemical sen-
sors,68,69 and tunable phononic crystals for controlling the flow of
phonons.49,70
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